UPDATED. 2019-11-19 15:17 (화)
크라우드소싱 기반의 실내 위치인식 기술 개발
크라우드소싱 기반의 실내 위치인식 기술 개발
  • 교수신문
  • 승인 2019.06.18 08:49
  • 댓글 0
이 기사를 공유합니다

KAIST 전산학부 한동수 교수 연구팀

 

KAIST(총장 신성철) 전산학부 한동수 교수 연구팀(지능형서비스통합 연구실)이 크라우드소싱 기반의 실내 위치 인식 기술을 개발했다. 이번 기술은 스마트폰에 탑재된 다양한 센서를 통해 수집된 신호를 기반으로 무선랜 신호(일명 핑거프린트)의 수집 위치를 자동으로 라벨링하는 인공지능 기법이다. 무선랜 신호가 존재하고 스마트폰이 사용되는 건물이면 어디든 적용할 수 있고 정확도가 높아 도심의 실내 위치 인식 시스템 구축비용을 획기적으로 줄일 수 있을 것으로 기대된다. 세계적인 주요 IT 기업들은 실내 환경에서 정확도 높은 위치정보를 제공하기 위해 다양한 노력을 해 왔지만, 정확도 높은 라디오맵(특정 지역이나 건물의 신호 특성) 구축에 많은 어려움을 겪고 있다. 주로 활용되는 와이파이 포지셔닝 시스템(WPS)는 건물의 층을 구분하지 못한다는 한계가 있다. 연구팀은 문제 해결을 위해 우선 불특정 다수의 스마트폰을 통해 수집된 무선신호를 클러스터링을 통해 건물별로 분류한 뒤 기압 정보를 통해 다시 층별로 분류했다. 연구팀은 날씨 변화로 인한 기압 정보 측정에 어려움을 겪던 기존 기술의 한계를 극복하고 수집된 무선신호를 층별로 구분하는 기법을 새롭게 개발했다. 연구팀은 새로 개발한 반자율학습 위치 라벨링 AI 기법을 통해 무선신호의 수집 위치를 라벨링했다. 관성 센서 기반의 관성항법(Pedestrian Dead Reckoning) 기법을 접목해 초기 라디오맵을 구축했고, 관성 센서로부터 얻어지는 신호 정보 없이 수집된 무선신호는 지역 탐색과 전역 탐색을 반복적으로 수행하는 최적화 기계학습 알고리즘을 통해 수집 위치를 최적화했다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.